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1. Introduction

Seventy years before, C.G. Stueckelberg [1] introduced a scalar into massive abelian vector

theory without violation of gauge symmetry and renormalizability. Since then, people used

to apply this mechanism to describe massive photon. Beyond that, many other applications

also emerged, such as those to SM [2, 3], MSSM [4], string [5] and extra dimension [6],

etc. The latest review was given by ref. [7]. This mechanism in literature was seen as a

scheme to replace Higgs mechanism for broken U(1) gauge theory [8] in the sense that it

does not need Higgs particle. Among various applications, we are interested in this work

in investigating physics of Z ′ boson. On the one hand, as a heavy undiscovered new vector

particle in the minimal extension of SM, Z ′ will probably be the particle easest to test in

future collider experiments and plays important role in various new physics models, such as

low energy models induced from GUT and SUSY [9 – 12], left-right symmetric models [9],

little Higgs models [13] and extra dimension models [14, 15], etc; on the other hand,

Stueckelberg mechanism provides us a special method to introduce abelian massive vector

into theory gauge invariantly. With this mechanism, we can simply add Z ′ boson to SM

and discuss corresponding physics [2]. However, the traditional Stueckelberg mechanism

only deals with lowest dimension term related to vector boson mass and leads typical

mixing term between scalar particle and gauge boson, which does not include those more

complex high dimension operators. As a consequence, this approach lost generality in the

sense that operator involving Z ′ boson through Stueckelberg mechanism is that with lowest

dimension which represents a special kind of Z ′ interaction. Though this operator plays

the most important role in low energy region, it is not general enough when we approach

to TeV energy region where effects of high dimension operators will emerge. These high

dimensional operators, most of them are non-renormalizable, are effective description of
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underlying new physics dynamics. Adding in these non-renormalizable high dimension

operators into theory is a necessary step when we want to go beyond SM to investigate

new physics model independently. This requirement leads to the generalization of the

traditional Stueckelberg mechanism by including high dimension operators into theory so

that general Z ′ interactions may be covered as much as possible. With non-renormalizable

operators included in, renormalizability of original theory is lost and is replaced by a

generalized version of renormalization for effective field theory [16].

There are two ways to systematically describe general effective interactions among par-

ticles in SM: namely, linear and nonlinear realizations of SM symmetry SU(2)L ⊗U(1)Y →
U(1)em. Within linear realization, we just add in high dimension operators into SM [17 – 20].

While in nonlinear realization, we start from electroweak chiral Lagrangian (EWCL) [21 –

23] which is the most general description for SM fields except Higgs. This EWCL was

generalized to extended electroweak chiral Lagrangian (EEWCL) by adding in original

EWCL a singlet Higgs field [24] to keep unitarity of the theory [25]. Though mathematical

equivalence between two descriptions was shown in [24], linear realization is suitable for

discussion of light Higgs, while nonlinear realization can be applied to investigate either

light or heavy Higgs. Due to this generality for EEWCL, we use nonlinear realization in this

paper. In fact, we will show that Stueckelberg mechanism is equivalent to chiral Lagrangian

for U(1) gauge field plus special choice of gauge fixing term. This equivalence enable us to

further understand the non-renormalizability for Stueckelberg mechanism when we try to

generalize it to non-abelian gauge field system and base our whole discussion on the non-

linear realization of SM symmetry. With the equivalence of Stueckelberg mechanism and

U(1) chiral Lagrangian, the generalization of traditional Stueckelberg mechanism become

obvious: we just extend EEWCL with an extra U(1) gauge symmetry and write down

all possible high dimension interaction terms. To make particle content in our discussion

close to low energy particle spectrum already discovered in experiment, except Higgs and Z ′

bosons, we do not involve any other new undiscovered particles in our theory. Higgs particle

in this work only plays a passive role and we mainly focus our attention on Z ′ interactions.

This paper is organized as follows. Section 2 is the proof for the equivalence of tradi-

tional Stueckelberg mechanism and U(1) chiral Lagrangian and discussion of its nonabelian

generalization. In section 3, we generalize original EEWCL to include Z ′ boson and write

down the bosonic part of Lagrangian up to order of p4. From this Lagrangian, we obtain

the most general mixing for neutral gauge bosons. Then we completely diagonalize and

discuss the mixing. In section 4, We build up the connections of these operators to triple ,

quartic couplings involving Z ′ boson and traditional electro-weak chiral Lagrangian. The

summary is given in section 4.

2. Equivalence between Stueckelberg mechanism and chiral Lagrangian

Now, let us review Stueckelberg mechanism. The most simple Stueckelberg Lagrangian for

massive vector Aµ can be written as

LStueck = −1

4
FµνFµν +

m2

2

(

Aµ − 1

m
∂µσ

)2

, (2.1)
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with obvious mass term m2A2
µ/2. Under U(1) gauge transformation Aµ → Aµ + ∂µǫ,

σ → σ + mǫ, the Lagrangian is invariant. Adding a gauge fixing term

LGF = − 1

2ξ
(∂µAµ + ξmσ)2 (2.2)

into the Lagrangian, the total Lagrangian is the sum of Stueckelberg Lagrangian LStueck

and gauge fixing term LGF

Ltotal = − 1

4g2
FµνFµν +

m2

2
AµAµ − 1

2ξ
(∂µAµ)2 +

1

2
(∂µσ)2 − ξ

2
m2σ2. (2.3)

Mixing term σ∂µAµ appeared in LGF cancels the same term in LStueck. This leads to the

decoupling of auxiliary scalar σ and vector field Aµ. The unphysical σ is given a mass

proportional to random parameter
√

ξ, which means σ is unphysical field and have no any

influence on vector field Aµ. So traditional Stueckelberg mechanism include two parts.

One is extension of standard mass term of U(1) gauge boson through term mixing with

differential of scalar field. This part, we will show, is equivalent to gauged U(1) chiral

Lagrangian. The other is choice of special gauge fixing term to cancel mixing between

scalar and gauge boson.

Now we prove the assertion that the first part of traditional Stueckelberg mechanism is

equivalent to gauged U(1) chiral Lagrangian. We change σ field by introducing an unitary

phase angle field U as

U(x) ≡ ei
σ(x)
m . (2.4)

Under U(1) gauge transformation, it transforms as U → eiǫU . We can construct covariant

derivative for U as

Dµ U(x) ≡ [∂µ − iAµ(x)]U(x) = iU(x)

[

1

m
[∂µσ(x)] − Aµ(x)

]

. (2.5)

With this covariant derivative, we can rewrite (2.1) in terms of U field as

LStueck = − 1

4g2
FµνFµν +

m2

2
(DµU)†(DµU) , (2.6)

which is standard lowest p2 order chiral Lagrangian (gauged nonlinear σ model) for U(1)

gauge field as long as we identify m with goldstone decay constant f . Here σ plays the

role of goldstone boson which, in terms of Higgs mechanism, will be eaten out by gauge

field Aµ to become its longitudinal part after symmetry breaking. Broken U(1) symmetry

is explicitly seen through unitary gauge U = 1 ( or taking vacuum).

In terms of our U field representation, gauge fixing term (2.2) can be written as

LGF = − 1

2ξ

(

∂µAµ − iξm2 ln U
)2

, (2.7)

which can cancel the mixing term between Aµ and σ and make σ becoming free field.
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Above equivalence between Stueckelberg mechanism and gauged U(1) chiral La-

grangian can be seen as an alternative statement for the distinction of the Stueckelberg

and the Higgs mechanisms for which conventional understanding relies on the existance

of a Higgs particle [4]. Now chiral Lagrangian is a formalism constructed by gauge field

and corresponding goldstone boson, it does not need Higgs field and therefore in this sense

is the same as Stueckelberg mechanism. In fact, this equivalence was pointed out in an

alternative way in ref. [26]. With this equivalence, applications of Stueckelberg mecha-

nism can be realized in terms of standard formalism of chiral Lagrangian. One possible

application is to consider effects from high dimension operators which as mentioned in

last section may reflect more complex and general interactions among Z ′ boson and SM

particles. This will be discussed in next section. Another direction of application is to gen-

eralize U(1) to nonabelian gauge symmetry. In the following part of this section, we take a

simplest nonabelian generalization by considering following symmetry breaking realization

SU(2)L ⊗ SU(2)R → SU(2)D with 2 × 2 unitary matrix field Ũ defined as

Ũ(x) ≡ e
i
m

σ̃i(x)τi = m

[
√

1 − Σ2(x)

m2
+ i

Σi(x)τi

m

]

Σi(x) ≡ mσ̃i(x)
√

σ̃2(x)
sin

√

σ̃2(x)

m
, (2.8)

where τi, i = 1, 2, 3 are Pauli matrices, and σ̃i are three goldstone bosons generated from

SU(2)L ⊗ SU(2)R → SU(2)D through Goldstone theorem. The SU(2)L ⊗ SU(2)R gauge

transformation is

Ũ(x) → ṼR(x)Ũ (x)Ṽ †
L(x) (2.9)

in which ṼR and ṼL are SU(2)R and SU(2)L group elements respectively.

Note that if we return back from (2.9) to our original abelian situation, U field will

transform as

U(x) → VR(x)U(x)V †
L(x) = VR(x)V †

L(x)U(x) , (2.10)

where VL = eiǫL and VR = eiǫR is U(1)L and U(1)R group element, respectively. Consider

U(1)L ⊗U(1)R = U(1)D ⊗U(1), with VD = ei(ǫR+ǫL) and VA = ei(ǫR−ǫL) = VRV †
L being cor-

responding U(1)D and U(1) group elements respectively. From (2.10), it is easy to see that

U field is invariant under U(1)D transformation and therefore U(1)D is a trivial symmetry

for Lagrangian (2.6). With this trivial U(1)D symmetry included in (2.6), the symmetry

realization pattern for original Stueckelberg Lagrangian become U(1)L ⊗ UR(1) → U(1)D.

With this form of ablelian symmetry realization for original Stueckelberg Lagrangian,

our nonabelian generalization of SU(2)L ⊗ SU(2)R → SU(2)D become obvious. The only

difference from abelian case is that the left unbroken symmetry SU(2)D is not a trivial

symmetry in the sense that Ũ is not invariant under its transformations.

Now we write down the Stueckelberg Lagrangian for SU(2)L ⊗ SU(2)R → SU(2)D,

LStueck−SU(2) = − 1

4g2
L

Fµν
L,iF

µν
L,i −

1

4g2
R

Fµν
R,iF

µν
R,i +

m2

4
tr

[

(

DµŨ
)† (

DµŨ
)

]

, (2.11)

– 4 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
7

with

DµŨ ≡ ∂µŨ − i
τi

2

(

Ṽ µ
i + Ãµ

i

)

Ũ + iŨ
τi

2

(

Ṽ µ
i − Ãµ

i

)

(2.12)

Fµν
R
L

,i

τi

2
= ∂µ

(

Ṽ ν±Ãν
)

−∂ν
(

Ṽ ν±Ãµ
i

)

−i
[

Ṽ µ±Ãµ, Ṽ ν±Ãν
]

Ṽ µ ≡ Ṽ µ
i

τi

2
Ãµ ≡ Ãµ

i

τi

2
,

where Ṽ µ
i , i = 1, 2, 3 are SU(2)D gauge fields and Ãµ

i , i = 1, 2, 3 are SU(2)L ⊗
SU(2)R/SU(2)D axial gauge fields. In unitary gauge, the third term of r.h.s. of (2.11)

becomes mass term 1
2m2Ã2 of the axial gauge boson field Ã. Due to unbroken symmetry

SU(2)D, corresponding gauge fields Ṽ µ
i , i = 1, 2, 3 remain massless.

In terms of fields Σi which is already expressed as function of σ̃i in (2.8), covariant

derivative (2.12) now is

DµŨ =



− Σi

m
√

1− Σ2

m2

+i
τi

m



 ∂µΣi+
1

m
Ãµ

i

[

Σi−iτi

√

1− Σ2

m2

]

+
i

m
Ṽ µ

i Σjǫijkτk. (2.13)

With it, (2.11) become

LStueck−SU(2) = − 1

4g2
L

Fµν
L,iF

µν
L,i −

1

4g2
R

Fµν
R,iF

µν
R,i (2.14)

+
1

2



− Σi
√

1 − Σ2

m2

∂µΣi + Ãµ
i Σi







− Σi′
√

1 − Σ2

m2

∂µΣi′ + Ãi′,µΣi′





+
1

2

(

∂µΣi−Ãµ
i

√

1− Σ2

m2
+Ṽ µ

j Σkǫijk

)(

∂µΣi−Ãi,µ

√

1− Σ2

m2
+Ṽ µ

j′ Σk′ǫij′k′

)

.

We find that not only the terms linear in gauge fields Ṽ µ
i and Ãµ

i mix with Σj fields, but

the terms bilinear in gauge fields also mix with Σj fields which is the general feature for

non-abelian gauged nonlinear σ model. This is not like the case of original abelian gauge

field, where terms bilinear in gauge fields do not mix with Σj fields. This feature makes

it impossible to use gauge fixing term to cancel mixing among gauge fields and goldstone

fields. Further nonabelian effects cause very complex dependence on goldstone fields which

make theory non-renormalizable. This example explicitly shows why generalization of

Stueckelberg mechanism to non-abelian case can not cancel mixing among scalars and

gauge fields and then cause a coupled non-renormalizable theory.

3. Generalized Stueckelberg mechanism and EEWCL for Z
′ boson

As mentioned in section 1, nonlinear realized effective field theory EEWCL is already

worked out by one of us in ref. [24]. Although this EEWCL only involve boson fields

in SM, it’s enough for our interests. In this section we are going to generalize it to in-

clude in Z ′ boson. The symmetry realization pattern is then generalized from original

SU(2)L ⊗ U(1)Y → U(1)em to SU(2)L ⊗ U(1)Y ⊗ U(1)Z′ → U(1)em. From equivalence

between Stueckelberg mechanism and chiral Lagrangian discussed in last section, to apply
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generalized Stueckelberg mechanism to Z ′ boson for EEWCL is equivalent to add into

EEWCL a phase degree of freedom representing goldstone boson eaten out by Z ′ and then

gauging in Z ′ gauge field. We insert this goldstone boson degree of freedom by enlarging

original two by two unimodular matrix U field with an extra U(1) phase factor, The new

two by two field will be denoted by Û . The difference between U and Û is that U is uni-

modular which satisfies constraint detU = 1 while Û does not. Relaxing this unimodular

constraint allows an extra U(1) phase in U field which now is identified with mixture of

goldstone bosons for Z and Z ′. We define the covariant derivative as

DµÛ = ∂µÛ + igWµÛ − iÛ
τ3

2
g′Bµ − iÛ(g̃′Bµ + g′′Xµ)I. (3.1)

where, Wµ ≡ τi

2 W i
µ, Bµν , Xµ are SU(2)L, U(1)Y and U(1)Z′ gauge fields respectively.

The reason to use X instead of Z ′ to label the U(1)Z′ gauge field is due to the fact that

there exists mixing among neutral gauge bosons. We denote Z ′ as the U(1)Z′ gauge field

after diagonaliztion. In (3.1), the new term beyond original covariant derivative given in

ref. [23] is proportional to the linear combination of gauge fields Bµ and Xµ with different

coefficients g̃′ and g′′. Different choice of these coefficients will results in different Z ′

interactions and typical Z ′ dynamics from non-traditional Stueckelberg mechanism usually

take g̃′ = 0. Later, we will discuss this issue in more detail.

The full bosonic part Lagrangian up to order of p4 is

LStueck−SU(2)L⊗U(1)Y ⊗U(1)Z′→U(1)em = L0 + L2 + L4 , (3.2)

with p0 and p2 order Lagrangian L0 and L2 being

L0 = −V (h) , (3.3)

L2 =
1

2
(∂µh)2 − 1

4
f2tr

[

V̂µV̂ µ
]

+
1

4
β1f

2tr
[

T V̂µ

]

tr
[

T V̂ µ
]

+
1

4
β2f

2tr
[

V̂µ

]

tr
[

T V̂ µ
]

+
1

4
β3f

2tr
[

V̂µ

]

tr
[

V̂ µ
]

+ β4f(∂µh)tr
[

V̂µ

]

, (3.4)

where T ≡ Ûτ3Û
† and V̂µ ≡ (D̂µÛ)Û †. Here we treat higgs field h as p0 order. All

coefficients f, β1, β2, β3, β4 are functions of higgs field h. p4 order Lagrangian L4 can be

decomposed into four parts

L4 = LK + LB + LH + LA (3.5)

in which kinetic part LK is

LK = −1

4
BµνB

µν − 1

2
tr[WµνW µν ] − 1

4
XµνXµν . (3.6)
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Bosonic part without differential of higgs field LB is

LB =
1

2
α1gg′Bµνtr[TW µν]+

i

2
α2g

′Bµνtr
[

T
[

V̂ µ, V̂ ν
]]

+ iα3gtr
[

W µν
[

V̂ µ, V̂ ν
]]

+α4tr
[

V̂µV̂ν

]

tr
[

V̂ µV̂ ν
]

+ α5tr
[

V̂µV̂ µ
]

tr
[

V̂ ν V̂ν

]

+ α6tr
[

V̂µV̂ν

]

tr
[

T V̂ µ
]

tr
[

T V̂ ν
]

+α7tr
[

V̂µV̂ µ
]

tr
[

T V̂ν

]

tr
[

T V̂ ν
]

+
1

4
α8g

2tr[TWµν]tr[TW µν]+
i

2
α9gtr[TW µν]tr

[

T
[

V̂µ, V̂ν

]]

+
1

2
α10tr

[

T V̂ µ
]

tr
[

T V̂ ν
]

tr
[

T V̂µ

]

tr
[

T V̂ν

]

+ α11gǫµνρλtr
[

T V̂µ

]

tr
[

V̂νWρλ

]

+α12gtr
[

T V̂ µ
]

tr
[

V̂ νWµν

]

+ α13gg′ǫµνρλBµνtr[TWρλ]+ α14g
2ǫµνρλtr[TWµν]tr[TWρλ]

+α15tr
[

V̂µ

]

tr
[

T V̂ µ
]

tr
[

T V̂ν

]

tr
[

T V̂ ν
]

+α16tr
[

V̂µ

]

tr
[

T V̂ µ
]

tr
[

V̂ν V̂
ν
]

+α17tr
[

V̂µ

]

tr
[

T V̂ν

]

tr
[

V̂ µV̂ ν
]

+α18tr
[

V̂µ

]

tr
[

V̂ν

]

tr
[

T V̂ µ
]

tr
[

T V̂ ν
]

+α19tr
[

V̂µ

]

tr
[

V̂ν

]

tr
[

V̂ µV̂ ν
]

+α20tr
[

V̂µ

]

tr
[

V̂ µ
]

tr
[

T V̂ν

]

tr
[

T V̂ ν
]

+α21tr
[

V̂µ

]

tr
[

V̂ µ
]

tr
[

V̂ν V̂
ν
]

+α22tr
[

V̂µ

]

tr
[

V̂ µ
]

tr
[

V̂ν

]

tr
[

T V̂ ν
]

+α23tr
[

V̂µ

]

tr
[

V̂ν

]

tr
[

V̂ µ
]

tr
[

V̂ ν
]

+gg′′α24Xµνtr[TW µν]

+g′g′′α25BµνXµν +α26ǫ
µνρλtr

[

V̂µ

]

tr
[

T V̂ν

]

tr
[

T
[

V̂ρ, V̂λ

]]

+ig′α27ǫ
µνρλtr

[

V̂µ

]

tr
[

T V̂ν

]

Bρλ

+igα28ǫ
µνρλtr

[

V̂µ

]

tr
[

T V̂ν

]

tr[TWρλ]+gα29ǫ
µνρλtr

[

V̂µ

]

tr
[

V̂νWρλ

]

+ig′′α30ǫ
µνρλXµνtr

[

T
[

V̂ρ, V̂λ

]]

+ig′′α31Xµνtr
[

T
[

V̂ µ, V̂ ν
]]

+g′′α32ǫ
µνρλtr

[

V̂µ

]

tr
[

T V̂ν

]

Xρλ

+α33tr
[

V̂µ

]

tr
[

T V̂ν

]

tr
[

T
[

V̂ µ, V̂ ν
]]

+g′g′′α34ǫ
µνρλBµνXρλ+gg′′α35ǫ

µνρλXµνtr[TWρλ]

+ig′α36tr
[

V̂µ

]

tr
[

T V̂ν

]

Bµν +igα37tr
[

V̂µ

]

tr
[

T V̂ν

]

tr[TW µν]+gα38tr
[

V̂ µ
]

tr
[

V̂ νWµν

]

+g′′α39tr
[

V̂µ

]

tr
[

T V̂ν

]

Xµν + igα40tr
[

V̂ µ
]

tr
[

T V̂ νWµν

]

. (3.7)

Among them α12 ∼ α14, α30, α33 ∼ α40 are CP-violation terms. Bosonic part with

differential of higgs field LH is

LH = (∂µh)
{

αH,1tr
[

T V̂ µ
]

tr
[

V̂ν V̂ ν
]

+ αH,2tr
[

T V̂ν

]

tr
[

V̂ µV̂ ν
]

+ αH,3tr
[

T V̂ν

]

tr
[

T
[

V̂ µ, V̂ ν
]]

+αH,4tr
[

T V̂ µ
]

tr
[

T V̂ν

]

tr
[

T V̂ ν
]

+ igαH,5tr
[

T V̂ν

]

tr[TW µν]+ g′αH,6tr
[

T V̂ν

]

Bµν

+igαH,7tr
[

T V̂νW
µν
]

+ gαH,8tr
[

V̂νW
µν
]

+ αH,9tr
[

V̂ µ
]

tr
[

V̂ν V̂ ν
]

+ αH,10tr
[

V̂ν

]

tr
[

V̂ µV̂ ν
]

+αH,11tr
[

V̂ν

]

tr
[

T
[

V̂ µ, V̂ ν
]]

+ αH,12tr
[

V̂ µ
]

tr
[

T V̂ν

]

tr
[

T V̂ ν
]

+ αH,13tr
[

V̂ µ
]

tr
[

V̂ν

]

tr
[

T V̂ ν
]

+igαH,14tr
[

V̂ν

]

tr[TW µν]+ g′αH,15tr
[

V̂ν

]

Bµν
}

+ (∂µh)(∂νh)
{

αH,16tr
[

T V̂ µ
]

tr
[

T V̂ ν
]

+αH,17tr
[

V̂ µV̂ ν
]

+ αH,18tr
[

V̂ µ
]

tr
[

T V̂ ν
]

+ αH,19tr
[

V̂ µ
]

tr
[

V̂ ν
]}

+ (∂µh)(∂µh)

×
{

αH,20tr
[

T V̂ν

]

tr
[

T V̂ ν
]

+ αH,21tr
[

V̂ν V̂
ν
]

+ αH,22tr
[

V̂ν

]

tr
[

T V̂ ν
]

+ αH,23tr
[

V̂ν

]

tr
[

V̂ ν
]}

+(∂µh)(∂µh)(∂νh)
{

αH,24tr
[

T V̂ ν
]

+ αH,25tr
[

V̂ ν
]}

+ αH,26[(∂µh)(∂µh)]2 . (3.8)

Anomaly part LA is

LA = α42g
2ǫµνρλtr [WµνWρλ] + α43g

′2ǫµνρλBµνBρλ + g′′
2
α44ǫ

µνρλXµνXρλ . (3.9)
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Similar as p0 and p2 order, all α coefficients in p4 order Lagrangian are functions of higgs

field h.

Above chiral Lagrangian is the most general EWCL involve Z ′ and higgs fields, in

terms of which we can examine details of Z ′ physics. In following of this section, we focus

our attentions on the mixing among gauge bosons.

We take unitary gauge Û = 1. The gauge boson mass term LM and kinetic term LK

become

LM =
1

8
f2g2

[

W 1
µW 1,µ + W 2

µW 2,µ
]

+
1

8
(1 − 2β1)f

2(gW 3
µ − g′Bµ)(gW 3,µ − g′Bµ) (3.10)

+
1

2
(1−2β3)f

2(g′′Xµ+g̃′Bµ)(g′′Xµ+g̃′Bµ)+
1

2
β2f

2(g′′Xµ+g̃′Bµ)(gW 3,µ − g′Bµ) ,

LK = −1

4
BµνBµν − 1

4
XµνXµν − 1

4
(∂µW 1

ν − ∂νW 1
µ)2 − 1

4
(∂µW 2

ν − ∂νW
2
µ)2

−1

4
(1 − α8g

2)(∂µW 3
ν − ∂νW

3
µ)2 +

1

2
α1gg′Bµν(∂µW 3

ν − ∂νW 3
µ)

+gg′′α24X
µν(∂µW 3

ν − ∂νW 3
µ) + g′g′′α25BµνX

µν , (3.11)

in which the charged gauge bosons W 1
µ and W 2

µ are automatically diagonalized. This is

due to the fact that there is no other charged vector and scalar particles to mix with. To

generate mixing for charged gauge bosons, we need to add in theory new charged gauge

bosons, such as W ′,1
µ and W ′,2

µ which was already discussed in ref. [27] or new charged

Higgs bosons. For the remaining neutral gauge bosons W 3, B,X, our Lagrangian includes

most general mixing among them. We can choose special parameters to recover the

various scenarios discussed in literature. For example,

• Taking fg′′ = M1, f g̃′ = M2 and αi = βj = 0, (3.10) and (3.11) come back to

Stueckelberg Lagrangian given in ref. [4] which depends on coefficients M1 and M2 .

• Taking
β2

√
g2+g′2

2(1−β3)g′′ = x, −2g′′(gα24 − g′α25) = y, −2g′′(gα24 + g′α25) = w, (1 −
2β3)g

′′2f2 = m2
X and β1 = αi = 0 (i 6= 24, 25), (3.10) and (3.11) come back to

effective Lagrangian given in ref. [32] which depends on coefficients x, y,w, m2
X and

includes a more simplified case discussed in an earlier ref. [33].

• Taking −2gg′′α25 = sin χ, and β1 = β3 = αi = 0 (i 6= 25). (3.10) and (3.11) come

back to effective Lagrangian for E6 model given in ref. [34] which depends on a mixing

angle χ .

What we need to do next is to diagonalize these mass and kinetic terms. We first try to

cancel term (g′′Xµ + g̃′Bµ)(gW 3
µ − g′Bµ) in LM by mixing g′′X + g̃′B with gW 3

µ − g′Bµ

g′′Xµ + g̃′Bµ = cosαZ′

(

g′′X̄µ + g̃′B̄µ

)

+ sinαZ′

(

gW̄ 3
µ − g′B̄µ

)

gW 3
µ − g′Bµ = −sinαZ′

(

g′′X̄µ + g̃′B̄µ

)

+ cosαZ′

(

gW̄ 3
µ − g′B̄µ

)

, (3.12)

where

tan αZ′ =
3 + 2β1 − 8β3 −

√

(3 + 2β1 − 8β3)2 + 16β2
2

4β2
. (3.13)
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LM then reads as

LM =
1

8
f2g2

[

W 1
µW 1,µ+W 2

µW 2,µ
]

+
1

2
A2

2f
2(g′′X̄µ+g̃′B̄µ)2+

1

2
A2

1f
2(gW̄ 3

µ−g′B̄µ)2,(3.14)

with

A2
1 =

1

4
(1 − 2β1)c

2
α + β2sαcα + (1 − 2β3)s

2
α (3.15)

A2
2 =

1

4
(1 − 2β1)s

2
α − β2sαcα + (1 − 2β3)c

2
α , (3.16)

where, cα ≡ cos αZ′ and sα ≡ sin αZ′ .

The kinetic term for neutral gauge boson can be written as

LK,neural = (W 3
µν , Bµν ,Xµν)







−1
4(1 − α8g

2) 1
4α1gg′ 1

2gg′′α24
1
4α1gg′ −1

4
1
2g′g′′α25

1
2gg′′α24

1
2g′g′′α25 −1

4













W 3µν

Bµν

Xµν






. (3.17)

Decompose gW 3
µ as (gW 3

µ −g′Bµ)/2+(gW 3
µ +g′Bµ)/2, g′Bµ as −(gW 3

µ −g′Bµ)/2+(gW 3
µ +

g′Bµ)/2 and g′′Xµ as g′′Xµ + g̃′Bµ + (gW 3
µ − g′Bµ)g̃′/2g′ − (gW 3

µ + g′Bµ)g̃′/2g′. With help

of (3.12), we find







W 3
µ

Bµ

Xµ






=









1
2g

cα
1
2g

− 1
2g

sα

− 1
2g′

cα
1

2g′
1

2g′
sα

1
g′′

(

sα + g̃′

2g′
cα

)

− g̃′

2g′′g′
1
g′′

(

cα − g̃′

2g′
sα

)















gW̄ 3
µ − g′B̄µ

gW 3
µ + g′Bµ

g′′X̄µ + g̃′B̄µ






.

Further take following transformation which keeps neutral gauge boson mass terms to be

diagonal and rotates neutral gauge boson to the basis of Zµ, photon Aµ and Z ′
µ







gW̄ 3
µ − g′B̄µ

gW 3
µ + g′Bµ

g′′X̄µ + g̃′Bµ






=







cos βZ′

A1
0

sin βZ′

A1

ga gb gc

− sinβZ′

A2
0

cos βZ′

A2













MZ

f
Zµ

Aµ
MZ′

f
Z ′

µ






. (3.18)

Then the mass term involving neutral gauge bosons can be written as

LM,neural =
1

2
A2

1f
2(gW̄ 3

µ − g′B̄µ) +
1

2
A2

1f
2X̄2

µ =
1

2
M2

ZZ2
µ +

1

2
M2

Z′Z ′2
µ , (3.19)

with massless photon. Remaining six parameters are Z mass MZ , Z ′ mass MZ′ , mixing

angle βZ′ and coefficients a, b, c, which will be determined later. Now total rotation matrix

becomes






W 3
µ

Bµ

Xµ






= U







Zµ

Aµ

Z ′
µ






(3.20)

with

U ≡









1
2g

cα
1
2g

− 1
2g

sα

− 1
2g′

cα
1

2g′
1

2g′
sα

1
g′′

(

sα + g̃′

2g′
cα

)

− g̃′

2g′′g′
1
g′′

(

cα − g̃′

2g′
sα

)















cβ

A1
0

sβ

A1

ga gb gc

− sβ

A2
0

cβ

A2













MZ

f
0 0

0 1 0

0 0
MZ′

f






, (3.21)
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where, sβ = sinβZ′ and cβ = cos βZ′ . With above rotation, kinetic term for neutral gauge

boson (3.17) can be further written as

LK,neural =(Zµν , Aµν , Z ′
µν)K







Zµν

Aµν

Z ′,µν






K≡UT







−1
4(1 − α8g

2) 1
4α1gg′ 1

2gg′′α24
1
4α1gg′ −1

4
1
2g′g′′α25

1
2gg′′α24

1
2g′g′′α25 −1

4






U.

(3.22)

In which K is three by three symmetric matrix. Denote its matrix elements as Kij . Notice

that K11 ∝ M2
Z/f2 and K33 ∝ M2

Z′/f2, then normalization of Z and Z ′ kinetic terms,

K11 = −1

4
K33 = −1

4
, (3.23)

is necessary to interpret MZ and MZ′ introduced in (3.19) as the correct definition of Z

and Z ′ masses. Above normalization condition also fix values of MZ and MZ′ . Remaining

normalization of photon kinetic term demands K22 = −1/4 and diagonalization of kenetic

terms requires K12 = K13 = K23 = 0. These four constraint conditions further fix

remaining four parameters βZ′ , a, b, c. Detailed computation shows that first K22 = −1
4

fix parameter b,

b2 =
4g′2g′′2

(g2 + g′2)g′′2 + g2g̃′2 − g2g′2g′′2(2α1 + α8) + 4g2g′g′′2g̃′(α24 + α25)
.

while K12 = 0 fix parameter a,

a =
1

gA1A2

[

g′2g′′2 − g2g′2g′′2(2α1 + α8) + g2g′′2 − 4g2g′g′′2g̃′(α24 + α25) + g2g̃′2
]

×
{[

g2g′′
2
+ g2g̃′2 − g′2g′′

2
+ g2g′2g′′

2
α8 + 4g2g′g′′

2
g̃′α25

]

(sαsβA1 + cαcβA2)

+
[

2g2g′g̃′ + 4g2g′2g′′
2
(α24 + α25)

]

(−cαsβA1 + sαcβA2)
}

.

K23 = 0 fix parameter c,

c =
1

gA1A2

[

g′2g′′2 − g2g′2g′′2(2α1 + α8) + g2g′′2 − 4g2g′g′′2g̃′(α24 + α25) + g2g̃′2
]

×
{[

g2g′′
2
+ g2g̃′2 − g′2g′′

2
+ g2g′2g′′

2
α8 + 4g2g′g′′

2
g̃′α25

]

(−sαcβA1 + cαsβA2)

+
[

2g2g′g̃′ + 4g2g′2g′′
2
(α24 + α25)

]

(cαcβA1 + sαsβA2)
}

.

Finally K1,3 = 0 gives constraint

0 = G0

(

1 − 2c2
β

)

+ G2sβcβ , (3.24)

with G0 and G1 given in (A.1). Eq. (3.24) yielding tan β

tan β =
−G2 +

√

G2
2 + 4G2

0

2G0
. (3.25)
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Since the precision of our computation is only accurate up order of p4, while βi, i = 1, 2, 3, 4

represent p2 order operators and αi represent p4 order operators. Therefore we can ex-

pand our result in powers of βi and αi and to our p4 order precision, we only

need to keep terms at most quadratic in βi and linear in αi. Detailed computation gives

tan αZ′ = −2β2/(3−2β1+8β3), A1 = (1−β1)/2−β2
2/3−β2

1/4 and A2 = 1−β3+β2
2/6−β2

3/2.

The rotation matrix U is given in (A.2). In literature, most models [12, 28 – 30] treat

extra X gauge boson by only mixing it with W 3 boson in mass term. This corresponds to

α1 = α8 = α24 = α25 = β1 = β3 = g̃′ = 0 in our EEWCL. The result mixing angle become

tan ξ =
4g′′
√

g2 + g′2

g2 + g′2 − 4g′′2
β2 . (3.26)

Usually constraints on ξ are highly model-dependent [31], the typical value of which is at

order of 10−3. In our general case, X boson can mix not only with W 3, but also with B,

”There are no quantum numbers which forbid a mixing of neutral gauge bosons”,Leike1999.

In Leike’s review article [10], general mixing among Xµ, W 3
µ and Bµ in mass terms is

parameterized. Further mixing can happen not only in mass terms, but also in kinetic

terms. Authors in ref. [32, 35] studied a case that in kinetic terms, there are mixing among

Xµ, W 3
µ and Bµ. In our formulation, we use three by three U matrix to parameterize the

most general mixing among Xµ, W 3
µ and Bµ happened both in mass terms and kinetic

terms. The small values for mixing among X with W 3 and B require smallness in values

for U1,3, U2,3, U3,1, U3,2, which from (A.2) leads to the requirements

4g′′
2 6= g2 + g′2 g̃′ ≪ 1 g′′β2 ≪ 1 g′′α24 ≪ 1 g′′α25 ≪ 1 . (3.27)

Another sector which heavily depends on W 3, B and X mixing is the neutral current. The

corresponding Lagrangian is gW 3
µJ3,µ + g′BµJµ

Y + g′′XµJµ
X , in which except conventional

weak isospin third component current J3,µ and hypercharge current Jµ
Y , we now have extra

hidden current Jµ
X couple to Xµ boson. In terms of physical gauge boson Z,A,Z ′, the

Lagrangian becomes eJµ
emAµ + gZJµ

ZZµ + g′′Jµ
Z′Z ′

µ. With help of (3.21), we can read out

eJµ
em = gU1,2J

3,µ + g′U2,2J
µ
Y + g′′U3,2J

µ
X

gZJµ
Z = gU1,1J

3,µ + g′U2,1J
µ
Y + g′′U3,1J

µ
X (3.28)

g′′Jµ
Z′ = gU1,3J

3,µ + g′U2,3J
µ
Y + g′′U3,3J

µ
X .

For which, we find

• When g̃′ 6= 0, due to fact U3,2 6= 0 given in (A.2), photon will couple to hidden neutral

current Jµ
X . This situation was discussed in ref. [2].

• Small mixing among X with W 3 and B achieved by (3.27) will imply that hidden

neutral current Jµ
X decouples from Z boson and photon approximately; J3,µ and Jµ

Y

also decouple from Z ′ boson approximately.

• Jµ
X mainly couples to Z ′ and the coupling is g′′ which will see later that is proportional

to MZ′/f .

– 11 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
7

We now display the last three parameters accurate up order of p4 and linear order of g̃′

βZ′ =
1

∆g

{

2g′g̃′− 1

3

(

3g2
Z−∆g

)

β2−4g′′
2(

g2α24−g′2α25

)

}

− 2

9∆g
2

{

−9g′
(

2g2
Z−∆g

)

g̃′(β1−β3)

+2
(

g2
Z−g′′

2
)

β2

[(

g2
Z +20g′′

2
)

β1+
(

5g2
Z−44g′′

2
)

β3

]

}

−
2g2g̃′g′

(

∆g−2g′2
)

α1

∆g
2

−2g′g̃′g4α8

∆g
2 −

2g′g̃′
(

g4
Z +24g2

Zg′′2+16g′′4
)

β3β1

∆g
3 +

g′
(

3g4
Z +24g2

Zg′′2−16g′′4
)

g̃′β1
2

∆g
3

+
1

3

g̃′
(

29g4
Z − 16 g′′4 − 136g2

Zg′′2
)

g′β2
2

∆g
3 −

g′
(

−24g2
Zg′′2 − 48 g′′4 + g4

Z

)

g̃′β3
2

∆g
3

M2
Z

f2
=

1

4

[

g2
Z (1 − 2β1) − 2g2g′2α1 + g4α8

]

−
g2
Z

(

g′g̃′β2 − g′′2β2
2

)

∆g

− 4g̃′g′g′′2
(

g2α24 − g′2α25

)

∆g
− 8g2

Zg′′2g′g̃′

∆g
2 (β2β1 − β2β3)

M2
Z′

f2
= g′′

2
(1 − 2β3) +

g′′2
[

4g′g̃′β2 − g2
Zβ2

2

]

∆g
+ 4

g′′2g̃′g′
[

g2α24 −
(

g2 − 4g′′2
)

α25

]

∆g

+8
g′′2g′g̃′g2

Z

∆g
2 (β2β1 − β2β3) , (3.29)

where gZ =
√

g2 + g′2 and ∆g = g2 + g′2 − 4g′′2. All βi and αi coefficients appear in above

results must take their values with Higgs field inside the coefficients being substituted

by its vacuum expectation value. Notice that the correction for Z mass from extra Z ′

couplings is proportional to g̃′β2, (g′′β2)
2, g′′α24 and g′′α25 which are very small if we

adopt (3.27). In fact, in formulae for MZ and MZ′ , if we ignore these small mixing and

further neglect contribution from β1, α1, α8 which roughly are related to phenomenological

parameters T, S,U [23], we find M2
Z′/MZ ∼ 2g′′2(1 − 2β3)/e

2. This implies that even for

small mixing for neutral gauge bosons with Z ′ we still have two independent parameters

g′′ and β3 to tune its value.

We finish discussion on mixing among neutral gauge bosons by checking our com-

putation results. With constraints (3.27), X mixing with W 3 and B controlled by pa-

rameter g̃′, g′′β2, g′′α24 and g′′α25 become very small. Ignoring contributions from these

parameters, X will not mix with W 3 and B any more and the left mixing between W 3

and B then goes back to its value given be standard EWCL [23]. If we further demand

g̃′ = β1 = β2 = β3 = α1 = α8 = α24 = α25 = 0, we recover results of tree diagram SM

which include G0 = 0, A1 = 1/2, A2 = 1 and the matrix U becomes







cos θW sin θW 0

− sin θW cos θW 0

0 0 1






, (3.30)
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with tan θW = g′/g. The six parameters at this order of approximation are αZ′ = βZ′ =

c = 0, a = 2 g2−g′2

g(g2+g′2)
, b = 2g′√

g2+g′2
, MZ = f

2

√

g2 + g′2 and MZ′ = g′′f .

4. Anomalous couplings among gauge fields

In this section, we discuss effective gauge boson self interactions which include triple and

quartic coupling terms and these terms which not only include SM electroweak gauge fields

W±, A, Z, but also involve Z ′ field. The part without Z ′ field can be parameterized by

coefficients in original EWCL and parametrization for quadratic and triple couplings were

already given in ref. [23]. The quartic couplings can be worked out as follows,

LQGV = g++−−W+
µ W+µW−

ν W−ν−g+−+−(W+
µ W−µ)2+gZ4(ZµZµ)2+g+Z−ZW+

µ ZµW−
ν Zν

−g+−ZZW+
µ W−µZνZ

ν − g+−ZAW+
µ W−µZνA

ν − igǫ+−ZAǫµνρλZµAνW
+
ρ W−

λ

+[g+Z−A⊕+A−Z(W+
µ W−

ν + W+
ν W−

µ ) + ig+Z−A⊖+A−Z(W+
µ W−

ν − W+
ν W−

µ )]ZµAν

−e∗2(AµAµW+νW−
ν − W−

µ W+
ν AµAν) ,

with nine anomalous quartic couplings determined by

g++−− =
e∗2

8 sin2 θW

|Z
[

4 +
2α1e

2

c2 − s2
+ α8e

2

(

− 1

s2
+

c2

c2 − s2

)

+
2β1c

2

c2 − s2
+

(

α3 +
1

2
α4 −

1

2
α8 + α9

)

8e2

s2

]

g+−+− = − e∗2

8 sin2 θW

|Z
[

4 +
2α1e

2

c2 − s2
+ α8e

2

(

− 1

s2
+

c2

c2 − s2

)

+
2β1c

2

c2 − s2
−
(

−α3 +
1

2
α4 + α5 +

1

2
α8 − α9

)

8e2

s2

]

gZ4 = e∗4 cot4 θW |Z
(

1

2
α4 +

1

2
α5 + α6 + α7 + α10

)

1

2c8

g+Z−Z = e∗2 cot2 θW |Z
[

1 +
2β1

c2 − s2
+

2

c2(c2 − s2)
e2α1 +

(

2α3 +
α4 + α6

c2

)

e2

s2c2

]

g+−ZZ = e∗2 cot2 θW |Z
[

1 +
2β1

c2 − s2
+

2

c2(c2 − s2)
e2α1 +

(

2α3 −
α5 + α7

c2

)

e2

s2c2

]

g+−ZA = 2

[

1 +
β1

c2 − s2
+

e2α1

c2(c2 − s2)
+ α3

e2

s2c2

]

gǫ+−ZA =
2e2

s2c2
α11 (4.1)

g+Z−A⊕+A−Z = e∗2 cot θW |Z
[

1 +
β1

c2 − s2
+

1

c2(c2 − s2)
e2α1 + α3

e2

s2c2

]

g+Z−A⊖+A−Z = α12
e2

s2c2
,

where all coefficients are defined in ref. [23]. We can also obtain these anomalous couplings

from our theory by taking unitary gauge Û = 1. Matching these anomalous couplings

from original EWCL with those obtained from our theory involving Z ′ boson, we obtain

constraints which relate parameters in original EWCL with those in ours. These constraints
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can be seen as an alternative result obtained through integrating out Z ′ field and its

goldstone boson. Some of them are not independent each other and can be treated as

self consistent check of our computation. Detailed matching for M2
W± demands that the

fundamental parameter f in (3.4) be the same as that introduced in original EWCL [23].

Matching for M2
Z gives

δβ1 = g2α3+
2
(

g2+∆g

)

∆g
2

(

g′g̃′β2−g′′
2
β2

2

)

+
2g4g′g̃′

∆g
2 α24−

2g′g̃′
[

4g′2g′′2−
(

g2 − 4g′′2
)2
]

∆g
2 α25

+
4g′g̃′

∆g
3

[(

4g′′
2
∆g − g2∆g + 2g2g2

Z

)

β1β2 − 4g′′
2 (

2g2 + ∆g

)

β2β3

]

, (4.2)

with δβ1 being the difference between β1 introduced in (3.4) β1

∣

∣

∣

Z′
and corresponding

parameter introduced in original EWCL β1

∣

∣

∣

EWCL
, i.e. δβ1 = β1

∣

∣

∣

Z′
− β1

∣

∣

∣

EWCL
. While

matching triple and quartic anomalous couplings gives

δα1 = δα3 +
2

∆g
2

(

g′g̃′β2 − g′′
2
β2

2

)

+
4g′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β2 − 8g′′
2
β2β3

]

+
2g̃′

g′∆g
2

{[

(

g2 − 4g′′
2
)2

+ 2g′′
2 (

g2 − 2g′2
)

]

α24 +
(

g2 − 4g′′
2
)

(

g′2 + ∆g

)

α25

}

δα2 =
2

∆g
2

(

g′g̃′β2 − g′′
2
β2

2

)

+
4g′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β2 − 8g′′
2
β2β3

]

+
2g̃′

g′∆g
2

{

g2g′2α24 +
(

g2 − 4g′′
2
)

(

g′2 + ∆g

)

α25

}

δα4 =
4

∆g
2

(

g′g̃′β2−g′′
2
β2

2

)

+
8g′g̃′

∆g
3

[

(

2g2
Z−∆g

)

β1β2−8g′′
2
β2β3

]

+
4g′g̃′

∆g
2

(

g2α24−g′2α25

)

−4g′g̃′

∆g
α31

δα5 = −δα4

δα6 = −δα4 −
2g′g̃′

∆g
α17

δα7 = δα4 −
2g′g̃′

∆g
α16

δα8 = −2δα3 −
4

∆g
2

(

g′g̃′β2 − g′′
2
β2

2

)

− 8g′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β2 − 8g′′
2
β2β3

]

+
4g′g̃′

∆g
2

[(

g′2 − 4g′′
2
)

α24 + g′2α25

]

δα9 = −2δα3 −
4

∆g
2

(

g′g̃′β2 − g′′
2
β2

2

)

− 8g′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β2 − 8g′′
2
β2β3

]

+
2g′g̃′

∆g
2

[(

∆g − 2g2
)

α24 + 2g′2α25

]

+
2g′g̃′

∆g
α31

δα10 = −g′g̃′

∆g
α15 , (4.3)
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with δαi = αi

∣

∣

∣

Z′
− αi

∣

∣

∣

EWCL
and left δα3 undetermined. In obtaining above result, we are

accurate up to linear order of g̃′ and neglect all CP violation coefficients.

Beyond the self interaction part without Z ′ field, there is part depending on Z ′ field.

The quadratic term is already discussed before and we list down the triple and quartic

vertices,

LZ′anomalous= iCZ′−+Z ′µν
W+

µ W−
ν + iC+Z′−(W+

µνW−,µZ ′ν − W−
µνW

+,µZ ′ν) (4.4)

+D+−V1V2W
+
µ W−,µV1,νV2

ν+D+V1−V2W
+
µ V µ

1 W−
ν V ν

2 +DV1V2V3V4V1,µV µ
2 V3,νV

ν
4 .

The explicit expressions for various couplings in above Lagrangian are given in (A.3).

5. Summary

Stueckelberg mechanism as a traditional method to introduce a U(1) gauge boson into

theory is shown in this paper equivalent to set up a gauged U(1) chiral Lagrangian and

fix special gauge. With this equivalence to chiral Lagrangian, by constructing the non-

abelian generalization of the chiral Lagrangian, it is easy to understand why non-abelian

generalization of the Stueckelberg mechanism can not keep renormalizability. Further in

terms of chiral Lagrangian formulation, we generalize traditional Stueckelberg mechanism

by including in theory high dimension operators. We enlarge original EEWCL to include

an extra local U(1) symmetry to represent physics for Z ′ boson. The scalar particle in

Stueckelberg mechanism now is identified with goldstone boson eaten out by Z ′ to become

its longitudinal component. We build up complete list of EEWCL up to order of p4 includ-

ing Z ′ and higgs bosons. With this chiral Lagrangian, traditional minimal version of the

Stueckelberg mechanism can be seen as the leading nonlinear σ model term of our theory

and our generalization for Stueckelberg mechanism is to include in theory all possible high

dimension operators up to order of p4. We obtain most general interaction forZ ′ boson

and SM bosons. Among these interactions, we focus on the general mixing among neutral

gauge boson W 3, B and X. We diagonalize the mixing appeared in mass and kinetic

terms completely by introducing a three by three matrix U . The small mixing among X

with W 3 and B can be achieved by constraints (3.27). Due to lack of enough theoretical

constraints and experiment data, most of operators lead by our extension of Stueckelberg

mechanism have their free couplings. We need to gather more theoretical arguments and

experiment data to investigate them in future. Theoretically, through matching anomalous

couplings between original EWCL and our theory, we obtain connections among parame-

ters in ref. [23] and those in our theory which enable us to express anomalous couplings

in terms of parameters appeared in our theory. We also exhibit all p4 order operators for

gauge fields self-interaction involving Z ′.
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A. Necessary formulae for EWCL

In this appendix, we list down the necessary lengthy formulae needed in the text. First we

give expression for G0 and G1 introduced in (3.24),

G0 = −A1A2

{(

−g2−g′2+g′′
2
+(g̃′)2

)

cαsα+g′g̃′
(

s2
α−c2

α

)

+g2
[

2g′2cαsα+g′g̃′
(

c2
α−s2

α

)]

α1

+g2
[(

g′2−g′′
2−(g̃′)2

)

cαsα−g′g̃′
(

s2
α−c2

α

)

]

α8+2g2g′′
2 (

c2
α−s2

α

) (

α24+g′2α1α25

)

+g′′
2 [−4g′g̃′cαsα+2g′2

(

c2
α−s2

α

)] [

g2 (α8α25−α1α24)−α25

]

+g2g′′
2 [

8g′2sαcα

+4g′g̃′
(

c2
α−s2

α

)]

α24α25+g2g′2g′′
2
sαcα

(

4α2
25−α2

1

)

+4g2g′′
2(

g′sα+g̃′cα

)(

g′cα−g̃′sα

)

α2
24

}

G2 = A2
1

{

(g2+g′2)c2
α+
(

g′′
2
+(g̃′)2

)

s2
α

(

1−g2α8

)

−g2g′2c2
α(2α1+α8)+4g′g′′

2
g̃′s2

αα25

−4g2g′2g′′
2
c2
α

(

α2
24+α2

25+2α24α25

)

−g2g′′
2
s2
α

[

g′2α2
1+4(g̃′)2α2

24+4g′g̃′ (α8α25−α1α24)
]

}

−[A1 → A2, cα ↔ sα]+sαcα

(

A2
1+A2

2

)

{

−2g′g̃′
[

1−g2 (α1+α8)
]

+4g2g′′
2
[

(α24−α25)
(

1−g′′
2
α1

)

+2g′g̃′α2
24+g′′

2
α8α25

]}

. (A.1)

Next result is for rotation matrix U defined in (3.21), its matrix elements Ui,j are

U1,1 =
g

gZ

[

1− g′4

g2
Z

α1+
g2(g2+2g′2)

2g2
Z

α8

]

+
2ggZ

∆g
2

(

g′g̃′β2−g′′
2
β2

2

)

−8
g′′2g̃′g′

(

g′2∆g−g2g2
Z

)

gα24

∆g
2g3

Z

−8
g′3g̃′g′′2

(

g2
Z + ∆g

)

gα25

∆g
2g3

Z

+
4g̃′g′gZg

∆g
3

[

4g′′
2
β2(β1 − 2β3) + g2

Zβ1β2

]

U1,2 =
g′

g
U2,2 =

g′

gZ

[

1 +
g2g′2

g2
Z

(

α1 +
1

2
α8

)]

− 2g2g′2g̃′

g3
Z

(α24 + α25)

U1,3 =
2gg′′

∆g

[

g′g̃′

2g′′2
−β2+

(

g′2−4g′′
2
)

α24+g′2α25+4g′g̃′(β1−β3)−2g2
Zβ1β2+8g′′

2
β2β3

]

−2gg′g̃′(2g′′2∆g−g2g′2)

g′′∆g
2 α1+

g3g′g̃′(g′2−4g′′2)

g′′∆g
2 α8+

16gg′g′′g̃′

∆g
3

[

g2
Zβ2

1−∆gβ1β3+4g′′
2
β2

3

]

+
2

3

gg′g′′g̃′
(

−112g2
Zg′′2 + 17g4

Z + 32g′′4
)

g2
Z∆g

3 β2
2

U2,1 = − g′

gZ

[

1− g4

g2
Z

(

α1+
1

2
α8

)]

+
2g̃′(g2−4g′′2)gZ

∆g
2 β2−4

g̃′gZ

(

−g2∆g+8 g′2g′′2
)

β1β2

∆g
3

+
8g′′2g̃′

g3
Z∆g

2

[

g2
(

g2∆g − g′2g2
Z

)

α24 − 2g′2
(

g2∆g − 2g′2g′′
2
)

α25

]

+
2g′′2g′gZβ2

2

∆g
2

−16
g′′2g̃′gZ

(

∆g − 2g′2
)

β2β3

∆g
3
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U2,3 =
2g′g′′

∆g

(

g2−4g′′2

2g′g′′2
g̃′+β2 + g2α24+

(

g2−4g′′
2
)

α25

)

+
g2g′2g̃′

g′′∆g
2

[

2
(

g2−4g′′
2
)

α1+g2α8

]

+
4g′g′′

∆g
2

(

−2g′g̃′(β1−β3)+g2
Zβ1β2−4g′′

2
β2β3

)

+
4g′′g′

∆g
2

[

g2
Zβ1β2−4g′′

2
β2β3

]

−2

3

g′′g̃′
(

20g′6−12g4g′′2−136g2g′2g′′2−124g′4g′′2+32g′2g′′4+43g2g′4+26g4g′2+3g6
)

g2
Z∆g

3 β2
2

−16g′2g′′g̃′g2
Z

∆g
2 β2

1 +
16g′2g′′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β3 − 4g′′
2
β2

3

]

U3,1 =
2g′′gZ

∆g

(

−2g′g̃′

g2
Z

+β2+g2α24−g′2α25

)

+
2g2g′g′′g̃′

g3
Z∆g

2

[

2
(

g2∆g−2g2
Zg′2

)

α1+g2
(

2g2
Z +∆g

)

α8

]

+
4g′′gZ

∆g
2

(

−2g′g̃′(β1−β3)+g2
Zβ1β2−4g′′

2
β2β3

)

− 8

3

g′g̃′gZ

(

2g4
Z−13 g′′4−7g2

Zg′′2
)

β2
2

g′′∆g
3

−16g′g′′g̃′gZ

∆g
3

[

g2
Zβ2

1 + 4g′′
2
β2

3 +
(

∆g − 2g2
Z

)

β1β3

]

U3,2 = − gg̃′
√

g2
Zg′′2 + g2(g̃′)2 − g2g′2g′′2 (2α1 + α8) + 4g2g′g′′3g̃′ (α24 + α25)

= − gg̃′

g′′gZ
− g3g′2g̃′

g′′g3
Z

(

α1 +
1

2
α8

)

U3,3 = 1+
2g′′2

∆g
2

[

4g′g̃′
(

β2+2β2β3+g2α24−g′2α25

)

−g2
Zβ2

2

]

+
32g′g′′2g̃′g2

Z

∆g
3 β2(β1−β3) , (A.2)

where gZ =
√

g2 + g′2 and ∆g = g2 + g′2 − 4g′′2 and except U3,2 which vanishes when

g̃′ = 0, all other matrix elements are accurate up to linear order of g̃′.

The last formulae are the anomalous triple and quartic couplings for Z ′ field

introduced in (4.4),

CZ′−+ =
2g2g′′

(

β2 + g2α24 − g′2α25

)

∆g
+

4g2g′′
[

g2
Zβ1β2 − 4g′′2β2β3

]

∆g
2 − 2 g2g′′α31

−2

3

g2g̃′g′g′′
(

17g4
Z−112g2

Zg′′2+32 g′′4
)

β2
2

∆g
3g2

Z

+
g4g′g̃′

∆g
2g′′

[(

∆g−2g′
2
)

α1+g2α8

]

−g2g′g̃′

g′′∆g

[

1 + g2 (α3 + α9) +
(

g2 − 4g′′
2
)

α2

]

− 8
g̃′g′g2g′′ (β1 − β3)

∆g
2

+
16g̃′g′g2g′′

∆g
3

[

(

2g2
Z − ∆g

)

β1β3 − g2
Zβ2

1 − 4g′′
2
β2

3

]

C+Z′− =
2g′′g2

[

β2 −
(

g′2 − 4g′′2
)

α24 − g′2α25

]

∆g
+

4g2g′′
[

g2
Zβ1β2 − 4g′′2β2β3

]

∆g
2

−2

3

g2g′g̃′g′′
(

17g4
Z − 112g2

Zg′′2 + 32 g′′4
)

β2
2

∆g
3g2

Z

− g2g′g̃′

∆gg′′
− 4

g′g̃′g2g′′α3

∆g
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−8
g′g̃′g2g′′ (β1 − β3)

∆g
2 − g2g′g̃′

∆g
2g′′

[

2
(

g2g′
2−2g′′

2
∆g

)

α1+g2
(

g′2−4g′′
2
)

α8

]

−16
g′g̃′g2g′′

∆g
3

[

g2
Zβ1

2 −
(

2g2
Z − ∆g

)

β1β3 + 4g′′
2
β2

3

]

D+−Z′Z′ = 4 g2g′′
2
(α5 + α21) −

4g4g′′2β2
2

∆g
2 +

4g4g′g̃′

∆g
2

[

β2 −
(

g′2 − 4g′′
2
)

α24 − g′2α25

]

− 8g2g′g̃′g′′2α16

∆g
+

8g4g′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β2 − 8g′′
2
β2β3

]

D+Z′−Z′ = 4 g2g′′
2
(α4 + α19) + 4

g4g′′2β2
2

∆g
2 − 4g4g′g̃′

∆g
2

[

β2 −
(

g′2 − 4g′′
2
)

α24 − g′2α25

]

− 8g2g′g̃′g′′2α17

∆g
− 8g4g′g̃′

∆g
3

[

(

2g2
Z − ∆g

)

β1β2 − 8g′′
2
β2β3

]

D+−ZZ′ =
4g4g′′

[

β2−
(

g′2−4g′′2
)

α24−g′2α25

]

gZ∆g
−2g2gZg′′α16+

8g4g′′

∆g
2

(

gZβ1β2−4
g′′2

gZ
β2β3

)

− 2g4g′g̃′

gZg′′∆g

[

1 +
(

2g2
Z − ∆g

)

α3

]

−
g′g̃′g6

(

4g′2∆g − 12 g2g′′2 + g2gZ
2
)

α8

g3
Z∆g

2g′′

−
2g′g̃′g4

[

g2
Z

(

2g2g′2 − g′4 + 16g′′4
)

− 4g2g′′2(2g′2 + g′2)
]

α1

g3
Z∆g

2g′′

+8
g2gZg′g̃′g′′

∆g
(α7 − α21) − 16

g′g̃′g4g′′

gZ∆g
2 (β1 − β3) − 128

g′g̃′g4g′′3β3
2

gZ∆g
3

+32
g4g′g̃′g′′

gZ∆g
3

[

(

2g2
Z−∆g

)

β1β3+
14g2

Zg′′2−g4
Z−4g′′4

3
β2

2

]

−32
g4g′g̃′g′′gZβ1

2

∆g
3

D+Z−Z′ = D+Z′−Z =
2g4g′′

[

−β2 +
(

g′2 − 4g′′2
)

α24 + g′2α25

]

gZ∆g
− g2gZg′′α17

−4g4g′′

∆g
2

(

gZβ1β2−4
g′′2

gZ
β2β3

)

+4
g2gZg′g̃′g′′

∆g
(α6−α19)+8

g4g′g̃′g′′

gZ∆g
2 (β1−β3)

+
g4g′g̃′

gZg′′∆g

[

1 +
(

2g2
Z − ∆g

)

α3

]

+ 16
g4g′g̃′g′′gZβ1

2

∆g
3

−16
g4g′g̃′g′′

gZ∆g
3

[(

vg′
2
+4g′′

2
+g2
)

β1β3−4g′′
2
β2

3

]

+
g′g̃′g6

(

4g′2∆g−12g2g′′2+g2gZ
2
)

α8

2g3
Z∆g

2g′′

+
g′g̃′g4

(

g2g4
Z−4g2

Zg′′2∆g − g′4∆g

)

α1

g3
Z∆g

2g′′
+

16g′g̃′g4g′′
(

−14g2
Zg′′2+4g′′4+g4

Z

)

β2
2

3∆g
3g3

Z

D+−AZ′ =
4g3g′g′′

[

β2−
(

g′2−4g′′2
)

α24−g′2α25

]

gZ∆g
− 32g′g′′g3g′′2β2β3

gZ∆g
2 +

8g3g′g′′gZβ1β2

∆g
2
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−2g̃′g3g′2

g′′gZ∆g
− 128g′′3g̃′g3g′2β3

2

∆g
3gZ

−
4g3g′2g̃′g′′

(

17g4
Z−112g2

Zg′′2+32g′′4
)

β2
2

3g3
Z∆g

3

+
g′2g̃′g3

∆g
2g3

Zg′′

{[

8g2
Zg′′

2
∆g−g2g′

2 (
4g2

Z +2∆g

)

]

α1−g2
(

3g′
2
∆g − 8 g2g′′

2
)

α8

}

−8
g′2g̃′g′′g3α3

gZ∆g
− 32

g̃′g3g′′g′2gZβ1
2

∆g
3 + 32

(

2g2
Z − ∆g

)

g̃′g3g′′g′2β1β3

∆g
3gZ

−16
g′2g̃′g′′g3

∆g
2gZ

(β1−β3 + 2β2β3)

D+A−Z′ = D+Z′−A

= −
2g3g′g′′

[

β2−(g′2−4g′′2)α24−g′2α25

]

gZ∆g
+

16g′g′′g3g′′2β2β3

gZ∆g
2 − 4g3g′g′′gZβ1β2

∆g
2

+
8g′2g̃′g′′g3

gZ∆g
2 (β1 − β3) −

16g3g′′g̃′g′2

gZ∆g
3

[

(

2g2
Z − ∆g

)

β1β3 − 4g′′
2
β2β3

]

+
2

3

g′2g̃′
(

17g4
Z − 112g2

Zg′′2 + 32 g′′4
)

g′′g3β2
2

g3
Z∆g

3 +
16g3g′′gZ g̃′g′2β1

2

∆g
3

+
4g′2g̃′g3g′′α3

gZ∆g
+

g′2g̃′g3
(

2g2g′2g2
Z − 4g2

Zg′′2∆g + g′2g2∆g

)

α1

g′′g3
Z∆g

2

−1

2

g5g′2g̃′
(

8 g2g′′2 − 3g′2∆g

)

α8

g′′g3
Z∆g

2 +
g′2g̃′g3

g′′gZ∆g

DZ′ZZZ = −g3
Zg′′ (2α15 + α16 + α17)

+4
g′g̃′g3

Zg′′

∆g
(α6 + α7 + 2α10 − 2α18 − α19 − 2α20 − α21)

DZ′Z′ZZ = g′′
2
g2
Z (α5 + 2α7 + 4α20 + 2α21) − 4

g′′2g′g̃′g2
Z

∆g
(2α15 + α16 − 2α22)

DZ′ZZ′Z = 4 g′′
2
g2
Z (α4 + α6 + 2α18 + α19) + 32

g′′2g′g̃′g2
Z

∆g
(α22 − α15)

DZ′Z′Z′Z = −4 g′′
3
gZ (α16 + α17 + 2α22)

+16
g′g̃′g′′3gZ

∆g
(α6 + α7 + 2α18 − α19 + 2α20 − α21 − 4α23)

DZ′Z′Z′Z′ = 4 g′′
4
(α4 + α5 + 2α19 + 2α21 + 4α23) −

16g′′4g′g̃′

∆g
(α16 + α17 + 2α22) . (A.3)
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